Integrins and Cell Metabolism: An Intimate Relationship Impacting Cancer

نویسندگان

  • Rehman Ata
  • Costin N. Antonescu
چکیده

Integrins are important regulators of cell survival, proliferation, adhesion and migration. Once activated, integrins establish a regulated link between the extracellular matrix and the cytoskeleton. Integrins have well-established functions in cancer, such as in controlling cell survival by engagement of many specific intracellular signaling pathways and in facilitating metastasis. Integrins and associated proteins are regulated by control of transcription, membrane traffic, and degradation, as well as by a number of post-translational modifications including glycosylation, allowing integrin function to be modulated to conform to various cellular needs and environmental conditions. In this review, we examine the control of integrin function by cell metabolism, and the impact of this regulation in cancer. Within this context, nutrient sufficiency or deprivation is sensed by a number of metabolic signaling pathways such as AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and hypoxia-inducible factor (HIF) 1, which collectively control integrin function by a number of mechanisms. Moreover, metabolic flux through specific pathways also controls integrins, such as by control of integrin glycosylation, thus impacting integrin-dependent cell adhesion and migration. Integrins also control various metabolic signals and pathways, establishing the reciprocity of this regulation. As cancer cells exhibit substantial changes in metabolism, such as a shift to aerobic glycolysis, enhanced glucose utilization and a heightened dependence on specific amino acids, the reciprocal regulation of integrins and metabolism may provide important clues for more effective treatment of various cancers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A study on the targeting of ceramide metabolism by (-)-epicatechin gallate, catechin and quercetin in A-549 lung cancer cell line

Catechin, epicatechin gallate (ECG) and quercetin, as bioactive flavonoids, have been shown to possess anticarcinogenic effects. Ceramide plays an important role in killing tumor cells. Accordingly, the aim of this study was to clarify the involvement of these compounds in ceramide metabolism in A549 cancerous cell line. Spectrophotometer, cell culture and HPLC methods were used. Cell viability...

متن کامل

Integrins and the activation of latent transforming growth factor beta1 - an intimate relationship.

Integrins are crucial for the ability of cells to sense mechanical perturbations and to transmit intracellular stress to their environment. We here review the more recently discovered role of integrins in activating the pleiotrophic cytokine transforming growth factor beta 1 (TGF-beta1). TGF-beta1 controls tissue homeostasis in embryonic and normal adult tissues and contributes to the developme...

متن کامل

Metabolomics and Cell Therapy in Diabetes Mellitus

Diabetes with a broad spectrum of complications has become a global epidemic metabolic disorder. Till now, several pharmaceutical and non-pharmaceutical therapeutic approaches were applied for its treatment. Cell-based therapies have become promising methods for diabetes treatment. Better understanding of diabetes pathogenesis and identification of its specific biomarkers along with evaluation ...

متن کامل

Evaluation of the Anticancer Effect of Xanthium Strumarium Root Extract on Human Epithelial Ovarian Cancer Cells Using 1H NMR-Based Metabolomics

Epithelial Ovarian cancer is the leading cause of cancer mortality among women all over the world. As chemotherapeutics has many side effects, researchers have focused on the potential use of medicinal plants as natural antitumor agents. Xanthium strumarium studied in this work as an herbal anticancer agent. This study aimed to evaluate the antitumor effect and metabolic alterations ca...

متن کامل

Induction of Apoptosis by a Combination of 2-Deoxyglucose and Metformin in Esophageal Squamous Cell Carcinoma by Targeting Cancer Cell Metabolism

Background: Both mitochondrial dysfunction and aerobic glycolysis are signs of growing aggressive cancer. If altered metabolism of cancer cell is intended, using the glycolysis inhibitor (2-deoxyglucose (2DG)) would be a viable therapeutic method. The AMP-activated protein kinase (AMPK), as a metabolic sensor, could be activated with metformin and it can also launch a p53-dependent metabolic ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017